Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Graphene quantum dots-incorporated cathode buffer for improvement of inverted polymer solar cells

Identifieur interne : 000246 ( Chine/Analysis ); précédent : 000245; suivant : 000247

Graphene quantum dots-incorporated cathode buffer for improvement of inverted polymer solar cells

Auteurs : RBID : Pascal:13-0303887

Descripteurs français

English descriptors

Abstract

Graphene quantum dots (GQDs) are an emerging class of nanomaterials with unique photonic and electric properties. In this study, GQDs were prepared by a facile, inexpensive and high-yield hydrothermal method and were further used as a cathode buffer additive for inverted polymer solar cells due to a wide band gap (∼3.3 eV) and well-matched energy level between GQDs-cesium carbonate (GQDs-Cs2CO3) modified indium tin oxide (3.8 eV) and high occupied molecular orbit of [6,6]-phenyl-C61-butyric acid methyl ester (3.7 eV). In comparison to inverted polymer solar cells using cesium carbonate (Cs2CO3) buffer layer, the power conversion efficiency of GQDs-Cs2CO3 based device showed 22% enhancement from 2.59% to 3.17% as a result of enhanced exciton dissociation and suppressed free charge recombination at cathode/polymer active layer interface by GQDs. This work provides a new application of GQDs in organic electronic devices.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0303887

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Graphene quantum dots-incorporated cathode buffer for improvement of inverted polymer solar cells</title>
<author>
<name>HONG BIN YANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive</s1>
<s2>Singapore 637459</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 637459</wicri:noRegion>
</affiliation>
</author>
<author>
<name>YONG QIAN DONG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive</s1>
<s2>Singapore 637459</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 637459</wicri:noRegion>
</affiliation>
</author>
<author>
<name>XIZU WANG</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Institute of Materials Research and Engineering, No. 3 Research Link</s1>
<s2>117602, Singapore</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>117602, Singapore</wicri:noRegion>
</affiliation>
</author>
<author>
<name>SI YUN KHOO</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive</s1>
<s2>Singapore 637459</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 637459</wicri:noRegion>
</affiliation>
</author>
<author>
<name>BIN LIU</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive</s1>
<s2>Singapore 637459</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 637459</wicri:noRegion>
</affiliation>
</author>
<author>
<name>CHANG MING LI</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive</s1>
<s2>Singapore 637459</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 637459</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute for Clean Energy & Advanced Materials, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Chongqing 400715</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0303887</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0303887 INIST</idno>
<idno type="RBID">Pascal:13-0303887</idno>
<idno type="wicri:Area/Main/Corpus">000748</idno>
<idno type="wicri:Area/Main/Repository">000C49</idno>
<idno type="wicri:Area/Chine/Extraction">000246</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Active layer</term>
<term>Additive</term>
<term>Buffer layer</term>
<term>Buffer system</term>
<term>Butyric acid</term>
<term>Cathode</term>
<term>Cesium carbonate</term>
<term>Charge carrier recombination</term>
<term>Comparative study</term>
<term>Conversion rate</term>
<term>Electrical characteristic</term>
<term>Energy conversion</term>
<term>Energy level</term>
<term>Ester</term>
<term>Exciton</term>
<term>Fullerene compounds</term>
<term>Graphene</term>
<term>Hydrothermal growth</term>
<term>Hydrothermal synthesis</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Nanostructured materials</term>
<term>Orbit</term>
<term>Organic solar cells</term>
<term>Polymer</term>
<term>Quantum dot</term>
<term>Tin addition</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Point quantique</term>
<term>Cathode</term>
<term>Système tampon</term>
<term>Cellule solaire organique</term>
<term>Caractéristique électrique</term>
<term>Méthode hydrothermale</term>
<term>Synthèse hydrothermale</term>
<term>Additif</term>
<term>Niveau énergie</term>
<term>Couche ITO</term>
<term>Addition étain</term>
<term>Orbite</term>
<term>Etude comparative</term>
<term>Couche tampon</term>
<term>Conversion énergie</term>
<term>Taux conversion</term>
<term>Exciton</term>
<term>Recombinaison porteur charge</term>
<term>Polymère</term>
<term>Couche active</term>
<term>Graphène</term>
<term>Nanomatériau</term>
<term>Semiconducteur bande interdite large</term>
<term>Carbonate de césium</term>
<term>Oxyde d'indium</term>
<term>Ester</term>
<term>Acide butyrique</term>
<term>Composé du fullerène</term>
<term>Cs2CO3</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Polymère</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Graphene quantum dots (GQDs) are an emerging class of nanomaterials with unique photonic and electric properties. In this study, GQDs were prepared by a facile, inexpensive and high-yield hydrothermal method and were further used as a cathode buffer additive for inverted polymer solar cells due to a wide band gap (∼3.3 eV) and well-matched energy level between GQDs-cesium carbonate (GQDs-Cs
<sub>2</sub>
CO
<sub>3</sub>
) modified indium tin oxide (3.8 eV) and high occupied molecular orbit of [6,6]-phenyl-C61-butyric acid methyl ester (3.7 eV). In comparison to inverted polymer solar cells using cesium carbonate (Cs
<sub>2</sub>
CO
<sub>3</sub>
) buffer layer, the power conversion efficiency of GQDs-Cs
<sub>2</sub>
CO
<sub>3</sub>
based device showed 22% enhancement from 2.59% to 3.17% as a result of enhanced exciton dissociation and suppressed free charge recombination at cathode/polymer active layer interface by GQDs. This work provides a new application of GQDs in organic electronic devices.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Graphene quantum dots-incorporated cathode buffer for improvement of inverted polymer solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>HONG BIN YANG</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>YONG QIAN DONG</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>XIZU WANG</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SI YUN KHOO</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BIN LIU</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CHANG MING LI</s1>
</fA11>
<fA14 i1="01">
<s1>School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive</s1>
<s2>Singapore 637459</s2>
<s3>SGP</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute for Clean Energy & Advanced Materials, Southwest University</s1>
<s2>Chongqing 400715</s2>
<s3>CHN</s3>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Institute of Materials Research and Engineering, No. 3 Research Link</s1>
<s2>117602, Singapore</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s1>214-218</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000501971110350</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0303887</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Graphene quantum dots (GQDs) are an emerging class of nanomaterials with unique photonic and electric properties. In this study, GQDs were prepared by a facile, inexpensive and high-yield hydrothermal method and were further used as a cathode buffer additive for inverted polymer solar cells due to a wide band gap (∼3.3 eV) and well-matched energy level between GQDs-cesium carbonate (GQDs-Cs
<sub>2</sub>
CO
<sub>3</sub>
) modified indium tin oxide (3.8 eV) and high occupied molecular orbit of [6,6]-phenyl-C61-butyric acid methyl ester (3.7 eV). In comparison to inverted polymer solar cells using cesium carbonate (Cs
<sub>2</sub>
CO
<sub>3</sub>
) buffer layer, the power conversion efficiency of GQDs-Cs
<sub>2</sub>
CO
<sub>3</sub>
based device showed 22% enhancement from 2.59% to 3.17% as a result of enhanced exciton dissociation and suppressed free charge recombination at cathode/polymer active layer interface by GQDs. This work provides a new application of GQDs in organic electronic devices.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Point quantique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Quantum dot</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Punto cuántico</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Cathode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Cathode</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Cátodo</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Système tampon</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Buffer system</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sistema amortiguador</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Caractéristique électrique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Electrical characteristic</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Característica eléctrica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode hydrothermale</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Hydrothermal growth</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método hidrotermal</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Synthèse hydrothermale</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Hydrothermal synthesis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Additif</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Additive</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Aditivo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Niveau énergie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Energy level</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Nivel energía</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Orbite</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Orbit</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Orbita</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Etude comparative</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Comparative study</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Estudio comparativo</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Conversion énergie</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Energy conversion</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Conversión energética</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Exciton</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Exciton</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Excitón</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Recombinaison porteur charge</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Charge carrier recombination</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Recombinación portador carga</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Polymère</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Polymer</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Polímero</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Couche active</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Active layer</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Capa activa</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Graphène</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Graphene</s0>
<s5>22</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Graphene</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>23</s5>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
<s5>24</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Carbonate de césium</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Cesium carbonate</s0>
<s5>25</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Cesio carbonato</s0>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>26</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Ester</s0>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Ester</s0>
<s5>27</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Ester</s0>
<s5>27</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Acide butyrique</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Butyric acid</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Butírico ácido</s0>
<s2>NK</s2>
<s5>28</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>Composé du fullerène</s0>
<s5>29</s5>
</fC03>
<fC03 i1="28" i2="3" l="ENG">
<s0>Fullerene compounds</s0>
<s5>29</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Cs2CO3</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="30" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>287</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000246 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000246 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0303887
   |texte=   Graphene quantum dots-incorporated cathode buffer for improvement of inverted polymer solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024